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Holographic Optical Data Storage
Doğan A. Timuçin and John D. Downie

Historical Introduction

Although the basic idea may be traced back to the
earlier X-ray diffraction studies of Sir W. L. Bragg,
the holographic method as we know it was invented
by D. Gabor in 1948 as a two-step lensless imaging
technique to enhance the resolution of electron mi-
croscopy, for which he received the 1971 Nobel Prize
in physics.  The distinctive feature of holography is
the recording of the object phase variations that carry
the depth information, which is lost in conventional
photography where only the intensity (= squared am-
plitude) distribution of an object is captured.  Since
all photosensitive media necessarily respond to the
intensity incident upon them, an ingenious way had
to be found to convert object phase into intensity
variations, and Gabor achieved this by introducing a
coherent reference wave along with the object wave
during exposure.  Gabor’s in-line recording scheme,
however, required the object in question to be largely
transmissive, and could provide only marginal image
quality due to unwanted terms simultaneously recon-
structed along with the desired wavefront.  Further
handicapped by the lack of a strong coherent light
source, optical holography thus seemed fated to re-
main just another scientific curiosity, until the field
was revolutionized in the early 1960s by some major
breakthroughs:  the proposition (A. L. Schawlow and
C. H. Townes) and demonstration (T. H. Maiman) of
the laser principle, the introduction of off-axis holo-
graphy (E. Leith and J. Upatnieks), and the invention
of volume holography (Y. N. Denisyuk). Conse-
quently, the remainder of that decade saw an expo-
nential growth in research on theory, practice, and
applications of holography.  Today, holography not
only boasts a wide variety of scientific and technical
applications (e.g., holographic interferometry for
strain, vibration, and flow analysis, microscopy and
high-resolution imagery, imaging through distorting
media, optical interconnects, holographic optical
elements, optical neural networks, three-dimensional
displays, data storage, etc.), but has become a promi-
nent art, advertising, and security medium as well.

The evolution of holographic optical memories
has followed a path not altogether different from
holography itself, with several cycles of alternating
interest over the past four decades.  P. J. van Heerden
is widely credited for being the first to elucidate the
principles behind holographic data storage in a 1963

paper, predicting bit storage densities on the order of

  1
3λ  with source wavelength λ – a fantastic capacity

of nearly 1 TB/cm3 for visible light!  The science and
engineering of such a storage paradigm was heavily
pursued thereafter, resulting in many novel hologram
multiplexing techniques for dense data storage, as
well as important advances in holographic recording
materials.  Ultimately, however, the lack of such ena-
bling technologies as compact laser sources and high-
performance optical data I/O devices dampened the
hopes for the development of a commercial product.
After a period of relative dormancy, successful appli-
cations of holography in other arenas sparked a re-
newed interest in holographic data storage in the late
1980s and the early 1990s.  Currently, with most of
the critical optoelectronic device technologies in
place and the quest for an ideal holographic recording
medium intensified, holography is once again consid-
ered as one of several future data storage paradigms
that may answer our constantly growing need for
higher-capacity and faster-access memories.

Holographic Principles

We show the basic recording and reconstruction ar-
rangements for off-axis holography in Figure 1, as-
suming that the object whose hologram (meaning
“whole record”) we wish to make is available in the
form of a transparency.  Here coherent light from a
laser source is collimated to produce a unit-amplitude
plane wave normally incident on the object, while at
the same time a portion of this plane wave is inter-
cepted by a prism to produce a spatial carrier refer-
ence wave (Fig. 1a).  A distance L behind the object
is a photosensitive recording medium, which we shall
simply refer to as “film” for convenience.  The object
transparency diffracts, or scatters, the illuminating
plane wave, producing across the film plane a com-
plex-amplitude field distribution

      
O O O( , ) ( , ) .arg ( , )x y x y ei x y=

The offset-reference plane wave, meanwhile, is inci-
dent on the film at an angle θ with the z axis, and can
be expressed mathematically as

      R( , ) ,sinx y eik y= θ
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Figure 1   Basic holography – the recording and reconstruction steps for a thin hologram

where     k = 2π λ  is the wave number, and λ  denotes
the source wavelength.  These mutually coherent
object and reference waves interfere inside the (thin)
film, creating the (2-D) intensity distribution
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Note that the last term of this interference pattern is a
standing wave (or “fringe”) whose amplitude and
phase are modulated by those of the object wave;
object phase information has thus been successfully
converted to intensity variations inside the film.

Within the linear exposure regime of the photo-
graphic medium, the amplitude transmittance of the
developed film (i.e., the hologram) becomes

    t x y t I x yH b( , ) ( , ),= +βτ

where (bias)   tb  and (slope) βτ  are (real) constants
characteristic of the film and the exposure time τ.  If
this hologram is now illuminated at normal incidence
by a plane wave of amplitude A (Fig. 1b), then the
transmitted field immediately behind the hologram
plane is found quite simply to be
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The first two terms here are the transmitted plane
wave and an ambiguity field, both of which propagate
along the z axis, while the last two terms are encoded
on complex-exponential carrier waves and therefore
propagate away from the z axis.  Specifically, we see
that the third term is (up to a constant factor) the
complex conjugate of the original object wave, which
forms a real (pseudoscopic) image of the object as
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light from the hologram converges in space at a dis-
tance L behind the hologram and at an angle θ with
the z axis.  Finally, the fourth term is a reconstruction
of the original object wavefront, and forms a virtual
(orthoscopic) image of the object as an observer sees
light from the hologram appear to diverge away from
a location a distance L in front of the hologram and at
an angle −θ with the z axis.  For faithful reconstruc-
tion of the object, it is clearly necessary that these
individual terms separate in space as they propagate
away from the hologram.  One can readily show, with
the help of Fourier analysis, that this will indeed be
guaranteed if the carrier angle is chosen to satisfy

    θ λ≥ arcsin( )3B , where B is the (spatial) bandwidth
of the object along the y axis.  We thus see that the
presence of a suitably chosen spatial carrier reference
wave during the recording step is what facilitates the
successful subsequent reconstruction of the object
from its hologram – an essential feature missing from
Gabor’s original in-line holography concept and was
later introduced by Leith and Upatnieks.

Under a unit-amplitude normally incident plane-
wave illumination, the relationship between the (pos-
sibly complex-valued) object amplitude transmittance

      tO ( , )ξ η  and the recording object wave       O( , )x y  can
be expressed in the form of a linear superposition as

      

O K t( , ) ( , ; , ) ( , ) ,x y x y O=
∞

−∞
∫∫ ξ η ξ η ξ ηd d

where       K ( , ; , )x y ξ η  denotes the propagation kernel
between the object and film planes, and is called the
point-spread function (or the impulse response) of the
intervening optical system.  Depending on the par-
ticular form of K, one can therefore speak of different
types of holograms.  For instance, if the film falls
within the near-field (Fresnel) diffraction region of
the object transparency, then the setup of Fig. 1a re-
cords what is termed a Fresnel hologram.  Now, if a
thin positive lens of focal length     f L= 1

2
 is inserted

halfway between the object and film planes, the cor-
responding recording is called a Fourier hologram,
since the object wave incident on the film in this case
is the (2-D) spatial Fourier transform of the object
amplitude transmittance.  Finally, if a lens with focal
length     f L= 1

4
 is used instead, then an (inverted)

image of the object is formed at the film plane, with
the result appropriately called an image hologram.

Fourier holograms provide an excellent mis-
alignment tolerance and make the most efficient use
of the hologram space–bandwidth product (i.e., they
use a minimal hologram area to record the object
information), while image holograms utilize the dy-
namic range of the recording medium in a much

more economical fashion; Fresnel holograms provide
a convenient design compromise between these two
conflicting requirements.  Another advantage of Fou-
rier and Fresnel holograms is the distributed (or re-
dundant) nature of the information storage method
that provides robustness against damage:  localized
defects and degradations in the hologram do not lead
to a total loss of recorded information, but merely
reduce the signal strength in the retrieved images.

Volume Holograms

So far we have discussed thin holograms operating in
the Raman–Nath diffraction regime whose influence
on incident optical waves can simply be characterized
by a multiplicative amplitude transmittance function,
as we did above.  Although images can clearly be
stored in and retrieved from such holograms, the true
potential of holographic data storage can be realized
only when one considers utilizing the third dimension
of the recording medium.  A grating whose thickness
significantly exceeds the fundamental fringe period
recorded in it is said to operate in the Bragg diffrac-
tion regime, where the extended volume of the me-
dium serves to suppress (or “filter out”) all but the
first diffraction order in reconstruction.  The physics
of volume diffraction thus endows the grating with a
selectivity property that can be exploited to store data
in a multiplexed fashion:  many holograms can be
stored within the same physical volume and then re-
trieved independently thanks to a unique addressing
scheme, thus greatly enhancing the overall storage
capacity of such a medium.

To illustrate the salient features of volume grat-
ings, we consider the basic arrangement shown in
Figure 2.  (Refraction at the air–medium interfaces,
though neglected for clarity in this diagram, is fully
accounted for in the following analysis.)  Two unit-
amplitude plane waves of common wavelength λ (in
air) are incident on the same side of a photosensitive
medium of thickness d, making angles ±θ (in air)
with the surface normal (Fig. 2a).  (This arrangement
records a transmission hologram, whereas incidence
from opposite sides of the medium forms a reflection
hologram.)  For simplicity, the medium is assumed to
be transparent (at λ) with an initial refractive index

  ni  and a maximum optically induced refractive-index

change   ∆nmax .  The two waves playing the roles of
reference and object here may be identified by their
wave vectors       { , } ( sin cos )k k a aR O Y Zk= ± +θ θ , and
the (3-D) intensity pattern formed by their interfer-
ence inside the recording medium is then simply

      
I e ei i

G
R O( ) cos .r k rk r k r= + = + ⋅( )[ ]⋅ ⋅ 2

2 1
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Figure 2  Volume holography – elements of a thick sinusoidal phase diffraction grating

Here     k k kG R O≡ −  is called the grating vector, and
is perpendicular to the intensity fringes (e.g., parallel
to the y axis in Fig. 2a, with the fringes planes paral-

lel to the x–z plane:        k aG Y k= 2 sinθ ).  We note from
the recording wave-vector diagram that the fringe
period is       Λ = =2 2π λ θ| | sink G .
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The refractive-index distribution inside the me-
dium (0 ≤ z ≤ d) resulting from this exposure is then

      
n n n G( ) cos ,r k r= + ⋅( )0 1

assuming an infinite lateral extent.  Note that     n ni0 ≠
in general, as the constant background intensity in-
evitably uses up part of the available dynamic range
during exposure.  Also, one typically tries to maintain

    n n1 << ∆ max  to assure operation in the linear exposure
regime and to utilize the material dynamic range eco-
nomically for multiplexed hologram recording.  (The
ratio     n n1 0  is called the modulation transfer func-
tion, and represents the spatial frequency response of
the recording medium at frequency   1 Λ .)  The tran-
sition between the Raman–Nath and Bragg diffrac-
tion regimes may be roughly characterized by the
parameter     Q d n≡ λ 0

2Λ :  a sinusoidal grating is said
to be thin if Q ≤ 1; otherwise it is considered thick.

To reconstruct the object wave, let us now illu-
minate the grating with a unit-amplitude plane play-
back wave at the recording wavelength λ  and at an
angle φ (Fig. 2b); that is, the playback wave vector is

      
k a aP Y Zk= +( )sin cosφ φ .  We can develop an in-

tuitive understanding of the volume diffraction proc-
ess by thinking of the recorded fringe planes as par-
tially reflecting mirrors.  (This is literally the case
with photographic film, where silver platelets are
formed at locations of high exposure upon develop-
ment.)  These partially reflecting mirrors transmit
part of the playback wave along its direction of inci-
dence, while deflecting the remaining part along an
angle −φ with the z axis, in accordance with the law
of reflection.  Now, for these reflected waves to inter-
fere constructively and recreate the original object
wave, the optical path-length (or phase) difference
between reflections from adjacent fringe planes must
be precisely one wavelength (or its integer multiples).
Simple trigonometry shows that this requirement will
be met if the playback angle satisfies the condition

    
sin sin .φ λ θ φ θ= = ⇒ =

2Λ
      B

Here   φB  is referred to as the Bragg angle, and this

particular playback wave, designated as     k B , is said
to be Bragg-matched to the grating.  Evidently, the
playback wave is scattered by the grating in such a
way that the diffracted wave vector satisfies

    k k kD B G= − , thus closing the reconstruction wave-
vector diagram (conservation of momentum).  Note
that the Bragg condition is also satisfied for φ θ= − ,

which is the case of object wave reconstructing the
reference wave, as well as for   φ π θ= ± −( ) (i.e., from
right to left in Fig. 2b) corresponding to the cases of
conjugate object wave reconstructing the conjugate
reference wave and vice versa.

It should be evident, even from this simplistic
description, that as the scattering of the playback
wave starts giving rise to the original object wave
inside the medium, this wave itself gets scattered by
the grating, coupling its energy back into the play-
back wave.  There is, in fact, a steady exchange of
energy (or “multiple reflections”) between these two
waves as they co-propagate through the grating – a
process known as two-wave mixing.  Therefore, the
diffraction efficiency η  of the grating, defined as the
ratio of the first-order diffracted power to the incident
power, may be expected to depend on the optical
interaction distance     n d1 cosθ  in a periodic fashion,
and a complete power transfer between the two
waves (i.e., η = 1) should be feasible.  In addition, we
may expect a Bragg-mismatched playback wave to
lose some of its power to higher-order grating modes
(with wave vectors     k k kn B Gn= − , n = …, −2, −1, 2,
3, …), yielding only a partial reconstruction (i.e.,
η < 1).  This problem of power loss to higher orders
is also encountered with gratings that are nonuniform
(i.e., decaying in modulation into the depth of the
medium) due to the ever-present absorption, or non-
sinusoidal (i.e., over- and under-exposed at their ex-
trema, or “saturated” and “cut off”) due to the typi-
cally nonlinear recording dynamics of the material.

This intuitive picture of volume diffraction was
substantiated formally in a seminal paper published
by H. Kogelnik in 1969, where an approximate yet
highly satisfactory coupled-wave approach was de-
veloped to solve the scalar Helmholtz equation

      ∇ + =2 2 2 0U k n U( ) ( ) ( )r r r  for the total optical field U
inside the grating.  Kogelnik’s analysis shows that the
diffraction efficiency of a thick sinusoidal phase
grating can be expressed as

    
η π

λ θ
θ θ=

+
+

≡ ≡
sin

,
cos
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sin

,
2 2
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where ∆θ is the angular detuning of the playback
wave from the Bragg angle θ.  The dependence of η
on ∆θ is plotted in Fig. 2c, where we firstly observe a
broad main lobe:  essentially, the finite size (in our
case thickness) of the medium has the net effect of
spreading the grating angular (k-space) spectrum into
a range of wave vectors centered at     k G .  One can
therefore visualize a cloud of grating vectors around
the tip of     k G  in k  space (position–momentum un-
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certainty), the consequence being that the Bragg con-
dition can now be (at least partially) satisfied by a
range of playback waves     k kP B≠  that may not be
perfectly Bragg-matched to the grating (Fig. 2b).  We
secondly note the appearance of the so-called Bragg
nulls, the first of which occurs for a ∆θ value of ap-
proximately     Θ ≡ λ θ2d sin :  there is a discrete set of
roughly equally spaced reconstruction angles at
which no grating diffraction is observed.  This sug-
gests the possibility of recording many holograms
within the same physical volume by using reference
waves at angles (or “addresses”)     θ0 ± nΘ , n = 0, 1, 2,

…, around some nominal center angle   θ0  – a scheme
known as angular multiplexing.  Since each holo-
gram sits at a Bragg null with respect to all the other
holograms, it should thus be possible to reconstruct
individual holograms without any interference from
the others.  In practice, of course, recorded object
patterns have some spatial structure (representing the
information being stored) with a corresponding
spread in their angular spectra, and therefore some
cross talk between retrieved patterns is inevitable.

As the angular bandwidth Θ of a thick grating is
inversely proportional to its width, it would seem that
the thicker the medium can be made, the higher the
attainable storage density becomes, and in fact stor-
age of several thousand angle-multiplexed holograms
has been routinely demonstrated in recent experi-
ments.  The ultimate physical limit on the storage
density of a medium therefore comes from its finite
dynamic range:  each recorded hologram uses up a
certain portion of the total available refractive-index
change, and once the entire range is exhausted, no
more holograms can be recorded even if the spatial
bandwidth of the medium would allow it.  (For a
large number N of multiplexed holograms, the aver-
age diffraction efficiency per hologram has been
found empirically to scale as     1

2N .)  It may also be
worthwhile to note here that in multiplexed record-
ing, holograms far apart in recording order experi-
ence notably different exposure conditions due to the
changing optical properties of the medium.  It is
therefore imperative that an optimal exposure sched-
ule be formulated for the particular storage material
being used to obtain equal diffraction efficiencies for
all of the N holograms.

Finally, mention should also be made of other
multiplexing schemes that can achieve similarly
dense holographic storage.  For instance, the kind of
Bragg detuning described above can also be achieved
by holding the reference angle fixed and instead
changing the wavelength – a scheme referred to as
wavelength multiplexing.  In an alternative technique
known as phase-code multiplexing, reference waves
are chosen from a set of orthogonal (2-D) phase dis-

tributions.  Yet another method that has been studied
vigorously in recent years is shift multiplexing, where
a highly divergent spherical beam is used as refer-
ence, and detuning is achieved by slight lateral
translation of the medium.  Depending on the afford-
able level of system complexity, any one or a combi-
nation of these and other (e.g., speckle, fractal, peris-
trophic, etc.) multiplexing techniques may be used.

Storage Materials

As can be inferred from the foregoing discussion, the
characteristics of the recording material are of para-
mount importance for volume holographic applica-
tions.  A list of ideal physical attributes for a holo-
graphic storage medium may include the following:

•  Recording mechanism – a large dynamic range
of optically induced, and preferably optically
erasable, refractive-index change (e.g.,   ∆nmax  ≅
10−3 to 10−2), negligible absorption;

•  Sensitivity – responsive to (widely and cheaply
available) red wavelengths, an appreciable holo-
graphic writing sensitivity (e.g., on the order of
10−2 cm3/J) requiring low recording powers;

•  Optical quality – suitable for casting in the form
of thick slabs with large surface areas (i.e., a
thick disk), high resolution (e.g., up to 5000 cy-
cles/mm), negligible scattering;

•  Stability – retain recorded data indefinitely over a
wide range of ambient (temperature, humidity,
etc.) conditions, show low fatigue over many
(e.g., millions of) write–read–erase cycles;

•  Volatility – a (simple) physical means of “fixing”
the recorded holograms so that they are not
weakened (or erased) by subsequent recording
and read-out beams;

•  Self-processing – no need for processing or de-
veloping of any kind (e.g., chemical, thermal,
magnetic, UV, IR, etc.) before or after recording;
and last but not least,

•  Cost – material readily and cheaply available or
manufacturable.

Although photographic silver-halide emulsions
have been the work horse of traditional holography,
they fail to meet many of these requirements, and a
host of more suitable materials has been found and
developed for holographic storage.  None of the can-
didate holographic storage media considered so far,
however, has been able to fulfill all the requirements,
and instead of a single “magical” material, an arsenal
of possible materials, each with a unique set of
strengths and weaknesses has emerged.  Among these
are photopolymer films (available from DuPont and
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Polaroid), photorefractive crystals such as iron-doped
lithium-niobate (Fe:LiNbO3), and photochromic films
such as those made from dichromated gelatin and the
light-harvesting protein BacterioRhodopsin.  For a
given type of memory to be developed, it is thus
likely that a sufficiently suitable material can be
found among this collection, and the storage system
can then be designed to compensate for the short-
comings of the material to the extent possible.

The key point of departure between different
holographic materials is the nature of the physical
recording process, which largely determines most of
the other properties of the storage medium. For in-
stance, in an impurity-doped electro-optic oxide like
Fe:LiNbO3, an inhomogeneous space-charge distri-
bution is created inside the medium via the diffusion
of electron–hole pairs excited by the illuminating
intensity, and the associated electric field then locally
modulates the refractive index of the medium via the
linear electro-optic effect.  In a photochromic me-
dium like a BR film, meanwhile, the incident inten-
sity creates a spatially varying volume population
difference between the two stable states of the mole-
cule, which leads directly to an absorption modula-
tion that is necessarily accompanied by a refractive-
index change through the Kramers–Kronig relation
(statement of causality).  Both of these materials are
optically erasable and hence suitable for use in a
ReWritable memory design (despite their low sensi-
tivity); however, this very property also leads to
volatility, requiring often complex engineering solu-
tions (e.g., two-photon gated recording, thermal or
electrical fixing, etc.) for data persistence.  On the
other hand, refractive-index changes can also be in-
duced in (organic) photopolymers by polymerizing a
monomer with visible illumination.  Since these ma-
terials typically offer a considerably larger dynamic
range, they are definitely a more attractive option for
a Write-Once Read-Many type of memory where
their irreversibility and low sensitivity are of little
concern.

System Architectures

The components that comprise a typical holographic
optical data storage system are

•  a coherent source (array) or collection of sources
that provide object, reference, and reconstruction
waves, and possibly another source for erasure;

•  a Spatial Light Modulator for preparing the (bi-
nary or multi-level) data to be stored as 2-D im-
ages (or “pages”);

•  a detector (array) and subsequent electronics for
data read-out, post-detection signal processing,
and error correction;

•  optics for routing and imaging the wavefields
within the system, along with other components
for performing data multiplexing; and finally

•  a storage medium within which holograms may
be written by altering the optical properties of
the material through some physical process.

A page-oriented holographic optical memory ar-
chitecture featuring these components is depicted in
Figure 3, which is the 90˚-geometry commonly used
with photorefractive crystals to achieve maximum
angular selectivity.  A pair of high-quality lenses
forms a 4–f imaging system that matches the pixels of
a (2-D) SLM to those of a CCD camera or a CMOS
detector array, and the crystal is placed at the Fourier
plane of this setup.  During recording, data is com-
posed as a binary or gray-level image on the SLM
and subsequently impressed on a collimated object
beam, whose Fourier transform is then formed inside
the crystal by lens L1.  At the same time, a plane ref-
erence wave is introduced from the side of the crystal
at a unique angle designated for that data page, thus
recording a Fourier hologram inside the crystal.
During retrieval, this page is addressed at the same
reference angle and the diffracted field is (inverse)
Fourier-transformed by lens L2, thus forming the
image of the original data page on the detector. Due
to the high angular selectivity of the medium, many
pages can be multiplexed within the crystal volume
and randomly accessed by use of the appropriate
addressing reference beams.  This page-oriented data
storage scheme also facilitates parallel data transfer,
thus enabling potentially very high read-out rates.

The design of a holographic data storage system
starts with the specification of a raw Bit-Error Rate
based on a target user BER and an affordable Error-
Correction Coding scheme of choice:  typically, an
acceptable BER of 10−12 can be delivered to the user
with a reasonable ECC overhead if a raw BER of 10−4

can be attained at the detector.  This, in turn,
translates into a minimum Signal-to-Noise Ratio that
must be achieved by the system at its output.  Among
the numerous and inter-related factors determining
the SNR are source wavelength and power, medium
dynamic range, thickness, diffraction efficiency, and
scattering, inter-page and inter-pixel cross talk
determined by the number of multiplexed pages,
number of bits per page, and the imaging system
point-spread function, detector integration time and
electrical noise, and other detrimental influences such
as misalignments and nonuniformities.

Due to the difficulties involved in working with
photorefractive crystals and the pressures placed on
the research community to produce a commercially
viable technology, increasing attention has also been
paid to a holographic disk paradigm.  Such a system
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Figure 3  The standard holographic optical data storage system architecture

may employ a thick photorefractive organic-polymer
disk with a spiral single- or multi-track data format
(much like the familiar CD/DVD technology) that is
accessed holographically by shift, speckle, or phase-
code multiplexing.  In recent years, teams at univer-
sities (California Institute of Technology, Stanford
University), government and industry research labo-
ratories (IBM Almaden Research Center, Lucent
Technologies – Bell Laboratories, NASA), and small
companies (Siros Technologies, Holoplex, Inc.) have
been actively pursuing the optical head, media, and
system design for commercial WORM and RW holo-
graphic optical data storage products.  The present
goal is to manufacture a system capable of a storage
capacity of about 50 GB, with roughly 100-ms re-
cording and 100-µs read-out times per (1-MB) page,
which may fulfill the market need for a memory that
is cheaper than silicon DRAM while offering faster
access than magnetic storage.

There is a rapidly increasing demand for high-
capacity and fast-access data storage in virtually all
avenues of human endeavor from medicine and edu-
cation to business and communications, from multi-
media and entertainment to military and space.  With
the development of suitable architectures and materi-
als, and the cost-effective availability of enabling
technologies, holographic storage is well positioned
to satisfy this need in the near future.
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